Kako je Njuškalo uz pomoć foto-prepoznavanja za 70% ubrzao predaju oglasa u mobilnoj aplikaciji

Kako je Njuškalo uz pomoć foto-prepoznavanja za 70% ubrzao predaju oglasa u mobilnoj aplikaciji

Foto-prepoznavanje predmeta u samom je vrhu svjetskih trendova i primjene umjetne inteligencije, a mi smo odlučili upravo tu tehnologiju uvrstiti u Njuškalovu aplikaciju prilikom predavanja oglasa. Kako je proces izgledao u praksi, na koje smo izazove naišli i što su planovi za budućnost, otkrivamo.

Foto-prepoznavanje dio je Njuškalove aplikacije za predaju oglasa na mobilnim uređajima. Funkcionira na način da, kada se predmet, poput majice ili automobila, fotografira kroz aplikaciju, ona će prepoznati o kojem se predmetu radi, odnosno prepoznat će njegovu kategoriju unutar oglasnika. Time se korisniku koji želi oglasiti taj predmet štede klikovi i vrijeme, što je i postalo glavna metrika ove opcije.

Za razvoj i implementaciju foto-prepoznavanja zaslužni su Njuškalov interni tim iz odjela Product developmenta, članovi Styria Data Science tima te tvrtke Trikoder i UndabotMoram istaknuti da je ovo prvi takav svjetski proizvod za oglasnike utemeljen na tehnologiji dubokih neuronskih mreža i izašao je u produkciju prije takvih inačica glavnih svjetskih igrača kao što su eBay, Alibaba i slični.

Glavna svrha nastanka foto-prepoznavanja

Nit vodilja u projektu i njegova sama svrha je olakšanje predaje oglasa na način da se ubrza cijeli proces, tako da korisnik preda jednu sliku ili više njih i da mu je automatski odabrana dobra kategorija. Ne gubi vrijeme klikajući, odnosno pretraživajući strukturu oglasnika, kako bi sam stavio predmet u odgovarajuću kategoriju.

Nekada je vrijedno predvidjeti, odnosno smjestiti sliku u kategoriju višeg ranga, posebice kada autor nije siguran u konkretan proizvod koji fotografira, primjerice mobitel, automobil i slično. Tada je bolje da se proizvod smjesti u kategoriju iznad, nego da pogađa neku od užih kategorija i možebitno pogriješi. U svakom slučaju, točnost pogađanja algoritma nije glavna metrika, nego upravo taj broj klikova koje smo mi uštedjeli korisniku koje bi on morao obaviti da nema te kategorizacije.

Naravno, nije sve teklo glatko

Jedan od prvih izazova bila je količina podataka koje smo morali, u suradnji s Trikoderom i Njuškalovim timom, ispravno organizirati. Prvenstveno da smanjimo slike oglasa na adekvatnu veličinu i da ih stavimo u bazu gdje ih možemo čitati dovoljnom brzinom.

Treniranje tih modela traje i do tjedan dana, a potrebno je provesti mnogo eksperimenata. Izazov je bio i izabrati kakve varijante, odnosno kakve eksperimente ćemo raditi, jer smo imali ograničeni broj računalnih resursa u računalnom centru.

Uz to, izazovi su također bili i kako stvoriti zajedničko shvaćanje svih uključenih u projekt, što je performansa tog modela i kako će se točno evaluirati. Na kraju se sve spojilo u broj klikova koje smo uštedjeli, odnosno u metriku koja na mobilnim uređajima govori koliko se u prosjeku smanjilo vrijeme predaje oglasa.

Točnost prepoznavanja predmeta je 86,5%

Korisnici koji koriste ovu opciju predaju oglas 70 posto brže, bez obzira na to je li riječ o Android ili iOS platformi. Za takav su rezultat zaslužne neuronske mreže Njuškala koje u pedesetak milisekundi pronalaze ispravnu oglasnu kategoriju na osnovu prepoznavanja fotografije. Točnost prepoznavanja predmeta je 86,5 posto, a aplikacija više od 70 posto oglasa automatski smješta u ispravnu krajnju kategoriju.

Korisnici imaju prosječno 2,7 manje klikova pri predaji oglasa, što donosi značajnu uštedu vremena i olakšava njihovu predaju.

Indirektan i direktan feedback korisnika

Proveli smo kampanje direktnog istraživanja feedbacka, gdje smo korisnike pitali kako im se sviđa ovaj novi dodatak. Dobili smo suludo dobre ocjene. Blizu 97 % korisnika je na skali od 1 do 5 dalo ocjenu 5, a prema tome možemo zaključiti da su korisnici od početka bili jako zadovoljni.

Indirektan feedback, naravno, možemo pratiti u povećanom broju oglasa predanih kroz taj sustav. Sve to je doprinijelo i prepoznatljivosti samog Njuškala kao vodećeg oglasnika, ali i svih uključenih u projekt, kako na nacionalnoj, tako i na svjetskoj razini.

A što nas čeka?

Mjesta za napredak uvijek ima dovoljno i time se bavimo kao dio Trikodera. Unaprjeđenje modela uključuje kontinuirani rad. Tehnologija koja je buknula 2012. godine, a tiče se duboke neuronske mreže, nije stala s razvojem, modeli su napredniji i kompleksniji i algoritamski i znanstveno.

Ima prostora za “čišćenje” podatkovnog skupa više milijuna slika koje imamo na Njuškalu. Imamo slika koje su neupotrebljive i onih gdje je iz same slike nemoguće predvidjeti kategoriju, npr., ako netko slika etiketu majice ili papire. Dakle, fotografija kao takva ne služi kao primjer za tu kategoriju proizvoda.

Naravno, postoji smjer istraživanja kako automatski izabrati slike koje su više informativne od onih koje su manje informativne, a model zatim rekreiramo samo na čistim, kvalitetnim slikama kako bismo dobili veću točnost.

Još jedan od noviteta na kojem radimo je nešto što slijedi u bližoj budućnosti. To je sustav gdje će se uživo odvijati kategorizacija, a ne na način da čovjek fotografira pa se onda ta slika učitava. Ovo će funkcionirati tako da, kada se uperi kamera u neki proizvod, na ekranu mu se ispisuje što je taj proizvod, koliko bi možda mogao koštati, za koliko bi se mogao prodati i slično. Sve je to dio kvalitetne nadogradnje koja će iskustvo korisnika Njuškala još više poboljšati štedjeći im klikove i vrijeme.

Sukladno članku 94. Zakona o elektroničkim medijima, komentiranje članaka na Netokraciji dopušteno je samo korisnicima koji ostave svoje ime i prezime te mail adresu i prihvate pravila ponašanja.

Pravila ponašanja

Na Netokraciji za vas stvaramo kvalitetan, autorski potpisan sadržaj i zaista se veselimo vašim kvalitetnim, kontruktivnim komentarima. Poštujmo stoga jedni druge prilikom komentiranja, kao i Zakon, držeći se sljedećih pravila ponašanja:

  • Ne budite 💩: Nema vrijeđanja, diskriminiranja, ni psovanja (osim ako nije osobni izričaj, ali onda neka psovka bude općenita, a ne usmjerena prema nekome). Također, upoznajte se sa stavkom 2. članka 94. Zakona o elektroničkim medijima prije no što ostavite komentar.
  • Samo kvalitetna rasprava, manje trolanja: Ne morate se ni sa kim slagati, ali budite konstruktivni i doprinesite raspravi! Svako trolanje, flameanje, koliko god "plesalo" na granici, leti van.
  • Imenom i prezimenom, nismo Anonymous 👤: Autor sadržaja stoji iza svog sadržaja, stoga stojite i vi iza svog komentara. Koristimo ime i prezime te pravu email adresu.

Kako koristimo podatke koje ostavljate? Bacite oko na našu izjavu o privatnosti.

Sve ostale komentare ćemo s guštom spaliti, jer ne zaslužuju svoje mjesto na internetu.

Komentari

    • ludi panj

      ludi panj

      31. 12. 2019. u 12:05 pm Odgovori

      da i mene to bode u oči,
      Visual Studio ML.NET (machine learning) kit,
      podatke za učenje imaju kategorizirane, istreniraju model,
      brat bratu 1 developer to riješi u jedno prijepodne
      sa dvadesetak linija koda,
      naravno treniranje AI-a i obrada slika traje, ali to je automatika,
      pustiš i vrtiš palčeve, za to vrijeme rješavaš
      prilagodbu front/back enda da se to koristi.

      točnost 86% je očekivana i podnošljiva

      4 firme za to, majko mila 🙁

Odgovori

Tvoja e-mail adresa neće biti objavljena.

Popularno

Veliki intervjui

Big Tech zarađuje skoro 200 milijuna eura od oglašavanja u Hrvatskoj, a ne plaća porez

Uvođenje oporezivanja internetskog oglašavanja moglo bi značajno pomoći domaćim medijima, ali kada će ući u Zakon o medijima?

Umjetna inteligencija

Najvažniji dio Rimčevog Vernea nije robotaksi, već iskustvo?

Ovaj tjedan rebrendirana u Verne, Project 3 Mobility, tvrtka koju su 2019. godine osnovali Mate Rimac, Adriano Mudri te Marko Pejković, danas napokon ima prvo “opipljivo” predstavljanje onog što su razvijali. No, je li robotaksi usluga zbilja najvažnije što mogu ponuditi?

Veliki intervjui

Postaj, Trebam.hr i Meštar.hr – što očekivati od platformi za pronalazak majstora

Usprkos tome što nam nedostaje majstora na raznim područjima, barem imamo dovoljno platformi koje će nas povezati s onima najboljima, ili se barem tome nadamo.

Što ste propustili

Startupi

Inkubator BIRD: otvorene su prijave za novi program

Riječ je o novom programu koji je restrukturiran na nekoliko razina i posebno namijenjen startupima s AI komponentom.

Tvrtke i poslovanje

iOLAP postaje Elixirr Digital

Elixirr Digital bio je "digitalni" odjel poslovanja, a sada uz iOLAP-ove ekspertize postaje "digitalni, podatkovni i tehnološki" odjel poslovanja.

Umjetna inteligencija

FER-ovim brucošima u pomoć pristiže Branka, AI pomoćnica nastala u suradnji s Infobipom

Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu je u suradnji s prvim hrvatskim jednorogom Infobipom razvio chatbot imena Branka koji će budućim studenticama i studentima omogućiti brži i jednostavniji proces upisa na FER.

Društvene mreže

X nakon pucnjave na Trumpa: “Mi smo javni trg”… Prije odskočna daska za teorije zavjera!

Opet se dogodilo. Opet sam nakon svjetski bitnog događaja otvorila Twitter (nikad X!).

Veliki intervjui

Rakar o slučaju KBC Rebro: “Obavijesti su bile nepotpune, zavaravajuće i u konačnici – netočne”

Krizno komuniciranje hakiranja KBC-a prouzrokovalo je više panike i straha, nego što je uspjelo smiriti hrvatski narod - je li moguće vratiti autoritet i povjerenje?

Veliki intervjui

Izdavači preuzimaju kontrolu: HUDI odabrao Dotmetrics za mjerenje posjećenosti hrvatskih portala

Od 1. siječnja 2025. godine Hrvatska udruga digitalnih izdavača postaje pružatelj mjerenja posjećenosti portala hrvatskih medija u suradnji s Ipsosom, odnosno Dotmetricsom. Tim smo povodom razgovarali s Matejem Lončarićem, predsjednikom HUDI-ja.